SIDDHARTH INSTITUTE OF ENGINEERING AND TECHNOLOGY :: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK

Subject with Code :DIGITAL COMMUNICATION TECHNIQUES(16EC3803)Course &

Branch: M.Tech –(DECS) Year & Sem: I-M.Tech & I-Sem

$\underline{\mathbf{UNIT}} - \mathbf{I}$	
1. a) Give the expression for probability density function (PDF) of Rayleigh distribution.	Find its mean
& variance. [6M]	
b) Explain the terms: "Auto correlation" & "Cross correlation" functions. [4M]	
2. a) Show that the signals have characteristics similar to vectors and develop a vector	
representation for signal waveforms. [5M]	
b) Draw the plot for autocorrelation function of the given sequence: 1 1 1 -1 -1 1 -1.	[5M]
3.a) What are memory less modulation methods? Explain any one modulation method.	[5M]
b) Draw the signal space diagram for 8-PSK & BFSK signals. Find the Elucidean distance	ce
between signal points in each case & comment on the result.	[5M]
4. a) Write about BPSK representation in signal space.	[4M]
b) Define the terms Narrow band, Band pass and Band limited.	[6M]
	[#]
5.a) Explain the concept of vector space representation.	[5M]
b) Write about signal space representation of BFSK. [5M]	
6. Define 'inner product' of two 'n' dimensional vectors. Explain the procedure for cons	tructing
a set of orthonormal vectors using Gram-Schmidt procedure.	[10M]
a set of officionoffial vectors using Grain-Schiller procedure.	[TOWI]
7. a) State and prove central limit theorem.	[5M]
b) Write about Moment generating functions.	[5M]
8. a) Explain Chi-square distribution in detail.	[5M]
b) State and prove Markov's inequality.	[5M]

9. a) Explain Central limit theorem.

[5M]

b) Define Rayleigh density and distribution function and explain them with their plots.

[5M]

10. A random process Y(t) = X(t) - X(t-T) is defined in terms of a process X(t) that is at least wide sense stationary if $Y(t) = X(t) - X(t\text{-}T \text{ . Find } E[Y(t)] \text{ and } \sigma y^2.$ [10M]

Prepared by: Prof P.Ratna Kamala

<u>UNIT -II</u>

1. a) Explain about probability of errors in AWGN channel.	[6M]	
b) Discuss about correlation demodulator.	[4M]	
2. a) Discuss about properties of Matched filter.	[4M]	
b) Derive the expression for output SNR of matched filter.	[6M]	
3. a) State and prove the Karhunen-Loeve theorem.	[6M]	
b) What is the frequency domain interpretation of matched filter?	[4M]	
	54.03.53	
4. Explain the optimum receiver for signals with random phase in AWGN channel.	[10M]	
5. a) Derive the expression for output SNR of matched filter.	[6M]	
b) Discuss about optimum receiver for binary signals.	[4M]	
6. a) Write about probability of error for envelope detection of M-ary orthogonal signals	. [6M]	
b) What is optimum detector for AWGN channel.	[4M]	
7. a) Discuss about matched filter Demodulator.	[4M]	
b) Explain, how Gram-Schmidt orthogonalization procedure allows to construct a set of ortho-		
normal wave forms. [6M]		
8. a) Explain the optimum receiver for signals corrupted by AWGN.	[5M]	
b) Explain the Vector space concept. [5M]		
9. Explain the Memory less modulation methods with the help of neat waveforms.	[10M]	
10. Suppose that binary PSK is used for transmitting information over AWGN with psd of		
$N_o/2 = 10^{-10}$ w/Hz. The transmitted signal energy is $E_b = A^2T/2$, when 'T' is the bit interval		

& 'A' is the signal amplitude. Determine the signal amplitude required to achieve an error

probability of 10^{-6} when the data rate is (i) 10 kbps. (ii) 100 kbps.

Prepared by: Prof P.Ratna Kamala

[10M]

<u>UNIT -III</u>

1. a) Discuss about the terms RMS delay spread, coherence bandwidth and coherence time.	[6M]	
b) Write about fading multipath channels.	[4M]	
2. a) What are the causes of fading? And explain the effects of fading in detail.	[5M]	
b) Explain about statistical models for fading channels.	[5M]	
3. a) Discuss about Rayleigh fading channel.	[4M]	
b) Mention the similarities and differences between Rayleigh's and Rician fading channels.	[6M]	
4. a) Derive the expression for probability of error when a BPSK signal is passed through a slow		
Rayleigh's fading channel. [5M]]	
b) Discuss about performance of Rician fading channels.	[5M]	
5. Write a short note on the following:		
a) Narrow band fading models.	[5M]	
b) Simulation methodology of fading channels.	[5M]	
6. a) Discuss classification and characterization of fading multipath channels.	[5M]	
b) Compute the RMS delay spread for the following power delay profile.	[5M]	
P(T) = 0 dB at T=0		
P(T) = 0dB at $T=1$ micro sec		
7. Explain the representation of time varying channel as an Impulse response. [10N	1]	
8. a) Write a short notes on Wide band fading models.	[6M]	
b) Explain the Clarkes model.	[4M]	
9.a) Explain the Jakes model. [5M]]	
b) Explain the types of Fading.	[5M]	
10.A modulated antipodal signal set is used over a channel which changes the phase at the transmitted		
signal by 900 or leaves unchanged. This phase shift changes randomly from bit-to-bit and is		
equally likely to change the phase or not. The transmitted signals are equally likely to occur. Find		

Prepared by: Prof P.Ratna Kamala

the optimum receiver for this channel.

[10M]

<u>UNIT-IV</u>

1. a) Derive the expression for probability of error in case of QPSK digital modulation scheme.b) Explain the importance of MSK modulation scheme.		[5M]
2. a) Explain about optimum non-coherent receiver for fading channels.b) Explain about performance of Ricean channels.	5M]	[5M]
3. Derive the expression for probability of error when a BPSK signal is passed through a sle Rayleigh's fading channel.	ow 10M]	
4. a) Explain the concept of random phase channels.b) Explain about performance of Rayleigh channels.	5M]	[5M]
5. a) Explain about optimum coherent receiver for fading channels.b) Compare MSK performance with that of QPSK & write the inference.	5M]	[5M]
6. a) Explain the performance of FSK modulation Scheme.b) Compare FSK , DPSK and MSK modulation schemes.		[5M]
7. a) Derive the expression for probability of error in case of FSK digital modulation schemes. [State of the expression for probability of error in case of FSK digital modulation schemes.	ne. 5M]	[6M]
8. a) Explain the performance of MSK modulation Scheme. b) Compare FSK performance with that of MSK.	4M]	[6M]
9. Derive the expression for probability of error when an MSK signal is passed through a sayleigh's fading channel. [10M]	slow	
10. a) Give the differences between Coherent and Non coherent receivers.b) Comapre Rayleigh and Ricean fading channels performance.		[6M] [4M]

Prepared by: Prof P.Ratna Kamala

<u>UNIT-V</u>

1. Draw the block diagram of OFDM system, & explain the importance of each block (block receiver).		nsmitter
2. a) Explain how to reduce ISI.		[5M]
b) Discuss about OFD multiplexing.	[5M]	
3. a) Write the advantages of OFDM.		[4M]
b) Derive the condition of Nyquist pulse for zero ISI.		[6M]
4. a) With the help of a diagram, explain Decision feedback equalizer.		[5M]
b) Explain about OFDM transmitter and receiver.		[5M]
5. a) Discuss about the importance of carrier synchronization.		[5M]
b) With a neat sketch explain an Adaptive Zero-forcing equalizer.	[5M]	
6. a) With a neat sketch, explain OFDM Receiver.		[5M]
b) Explain the concept of Multi-carrier transmission.		[5M]
7. a) Draw the general block diagram of multi-carrier synchronization unit and explain t each block.b) List the parameters by which the performance of any synchronization and channel	he funct	ion of
estimation algorithm is determined.	[5M]	
8. a) Explain the concept of Multi channel signal transmission.b) What are the two major problems associated with OFDM system? Explain thembrief.	y.	[5M]
9. a) Give brief notes Equalization Techniques.	[5M]	
b) What is meant by Partial response signaling?	[5M]	
10. a) Explain the block involved in OFDM Transmitter.	[5M]	
b) Explain the principle used in OFDM.	[5M]	
Duona nad hyu. Duof D	Dotne 1	Vamala